Las paradojas de Zenón son una serie de paradojas o aporías, ideadas por Zenón de Elea, para apoyar la doctrina de Parménides de que las sensaciones que obtenemos del mundo son ilusorias, y concretamente, que no existe el movimiento (física). Racionalmente, una persona no puede recorrer un estadio de longitud, porque primero debe llegar a la mitad de éste, antes a la mitad de la mitad, pero antes aún debería recorrer la mitad de la mitad de la mitad y así eternamente hasta el infinito. De este modo, teóricamente, una persona no puede recorrer un estadio de longitud, aunque los sentidos muestran que sí es posible.
Desde el punto de vista estrictamente lógico y matemático, y sin considerar sus aspectos filosóficos, las aporías o sofismas de Zenón pertenecen a la categoría de paradojas falsídicas, también llamadas sofismas, esto es, que no sólo alcanzan un resultado que aparenta ser falso, sino que además lo es. Esto se debe a una falacia en el razonamiento, producido por la falta de conocimientos sobre el concepto de infinito en la época en la que fueron formuladas.
Ejemplos:
Aquiles y la tortuga
Aquiles y la tortuga es, quizás, la más conocidas de las paradojas de Zenón. El filósofo argumentaba que, en una hipotética carrera entre Aquiles (el guerrero que mató a Héctor) y una tortuga, si esta tenía última una ventaja inicial, el humano siempre perdería. Zenón “demostraba” que, a pesar de que el guerrero corre mucho más rápido que la tortuga, nunca podría alcanzarla. Imaginemos que la distancia a cubrir en la carrera son cien metros, y que la tortuga tiene cincuenta metros de ventaja. Al darse la orden de salida, Aquiles recorre en poco tiempo la distancia (cincuenta metros) que los separaba inicialmente. Pero, al llegar allí, descubre que la tortuga ya no está, sino que ha avanzado, mucho más lentamente, diez o veinte centímetros. Lejos de desanimarse, el guerrero sigue corriendo. Pero, al llegar de nuevo donde estaba la tortuga, ésta ha avanzado un poco más. Zenón sostiene que esta situación se repite indefinidamente, y que Aquiles jamás logrará alcanzar a la tortuga, que finalmente ganará la carrera.
Aquiles y la tortuga es, quizás, la más conocidas de las paradojas de Zenón. El filósofo argumentaba que, en una hipotética carrera entre Aquiles (el guerrero que mató a Héctor) y una tortuga, si esta tenía última una ventaja inicial, el humano siempre perdería. Zenón “demostraba” que, a pesar de que el guerrero corre mucho más rápido que la tortuga, nunca podría alcanzarla. Imaginemos que la distancia a cubrir en la carrera son cien metros, y que la tortuga tiene cincuenta metros de ventaja. Al darse la orden de salida, Aquiles recorre en poco tiempo la distancia (cincuenta metros) que los separaba inicialmente. Pero, al llegar allí, descubre que la tortuga ya no está, sino que ha avanzado, mucho más lentamente, diez o veinte centímetros. Lejos de desanimarse, el guerrero sigue corriendo. Pero, al llegar de nuevo donde estaba la tortuga, ésta ha avanzado un poco más. Zenón sostiene que esta situación se repite indefinidamente, y que Aquiles jamás logrará alcanzar a la tortuga, que finalmente ganará la carrera.

La dicotomía
Esta paradoja, conocida como argumento o paradoja de la dicotomía, es una variante de la anterior.
Zenón está a ocho metros de un árbol. Llegado un momento, lanza una piedra, tratando de dar al árbol. La piedra, para llegar al objetivo, tiene que recorrer antes la primera mitad de la distancia que lo separa de él, es decir, los primeros cuatro metros, y tardará un tiempo (finito) en hacerlo. Una vez llegue a estar a cuatro metros del árbol, deberá recorrer los cuatro metros que le quedan, y para ello debe recorrer primero la mitad de esa distancia. Pero cuando esté a dos metros del árbol, tardará tiempo en recorrer el primer metro, y luego el primer medio metro restante, y luego el primer cuarto de metro... De este modo, la piedra nunca llegará al árbol.
Es posible utilizar este razonamiento, de forma análoga, para «demostrar» que la piedra nunca llegará a salir de la mano de Zenón.
Al igual que en la paradoja de Aquiles y la tortuga, es cierto que el número de puntos recorridos (y tiempos invertidos en hacerlo, según el argumento de la paradoja) es infinito, pero su suma es finita y por tanto la piedra llegará al árbol.
La paradoja de la piedra puede ser planteada matemáticamente usando series infinitas. Las series infinitas son sumas cuyo término variante (que puede tomar cualquier valor numérico) va hasta el infinito. Las series infinitas pueden ser convergentes o divergentes, en el primer caso la suma de las mismas es un número finito, en el segundo no.

La paradoja de la flecha
En esta paradoja, se lanza una flecha. En cada momento en el tiempo, la flecha está en una posición específica, y si ese momento es lo suficientemente pequeño, la flecha no tiene tiempo para moverse, por lo que está en el reposo durante ese instante. Ahora bien, durante los siguientes periodos de tiempo, la flecha también estará en reposo por el mismo motivo. De modo que la flecha está siempre en reposo: el movimiento es imposible.
Un modo de resolverlo es observar que, a pesar de que en cada instante la flecha se percibe como en reposo, estar en reposo es un término relativo. No se puede juzgar, observando sólo un instante cualquiera, si un objeto está en reposo. En lugar de ello, es necesario compararlo con otros instantes adyacentes. Así, si lo comparamos con otros instantes, la flecha está en distinta posición de la que estaba antes y en la que estará después. Por tanto, la flecha se está moviendo.
Otra perspectiva es acudir, directamente, a la definición de velocidad, cuya idea esencial es la de cambio: se cambia de espacio en un tiempo determinado. Así que, por definición, un cuerpo que se mueve, sin alterar el volumen de espacio que ocupa en cada momento, cambia de espacio, es decir, ocupa la misma cantidad, volumen, y forma de espacio, pero en un lugar distinto, al momento siguiente. El movimiento sería la sucesión de los distintos espacios ocupados por el cuerpo (móvil) en la sucesión de los distintos momentos que componen la magnitud de tiempo considerada. Así, si asumimos que el concepto velocidad, es decir, movimiento, puede definirse racionalmente, simultáneamente estamos admitiendo que el movimiento, racionalmente, en teoría, existe.

La Paradoja del Estadio
La paradoja del estadio. Dos filas de igual numero de soldados (B B B B y C C C C) parten de los extremos de un estadio en dirección al centro (la tribuna formada por A A A A) a la misma velocidad. Se paran cuando estén alineados. El primer soldado B recorre un espacio igual a dos A, pero, en el mismo tiempo, el primer soldado C recorre cuatro soldados B. Dado que los tamaños de A, B y C son iguales, se concluye que la velocidad de los soldados C es doble que la de los soldados B, y habíamos dicho que la velocidad era la misma.
A A A A
B B B B ----->
<------ C C C C

A A A A
B B B B ----->
<------ C C C C

Integrantes:
5 A
Zuemi C. Eligio Perez
Giovanni Alejandro Cordova Jimenez
Carolina D' Alba Aguilar
Daniela Cicler Morales
No hay comentarios:
Publicar un comentario